A Massive Geomagnetic Storm Is Going to Hit Earth on March 18th

By March 4, 2018 Science, Space

According to scientists at the Russian Academy of Sciences, a huge magnetic storm is making its way here in current times. This storm will, as some have said, cause headaches and dizziness in people all over the world.

According to RAS’s graph three days before the storm on March 14th, 16th, and 17th we will experience intense geomagnetic altercations. Once this storm reaches us on March 18th things might be a bit odd. It could disrupt GPS navigations, disrupt satellites, and even harm power grids across the globe. This will be the third since the beginning of this year to actually reach our planet. The other two took place on January 15th and February 19th.

This geomagnetic storm is nothing to be afraid of and will probably only make it a little harder for you to sleep. Some people may be affected more than others but honestly, most of us don’t even notice. Unless you are old or in bad health you most likely will just think you are having a rough day.

According to NOAA, a geomagnetic storm is by their definition as follows:

A geomagnetic storm is a major disturbance of Earth’s magnetosphere that occurs when there is a very efficient exchange of energy from the solar wind into the space environment surrounding Earth. These storms result from variations in the solar wind that produces major changes in the currents, plasmas, and fields in Earth’s magnetosphere. The solar wind conditions that are effective for creating geomagnetic storms are sustained (for several to many hours) periods of high-speed solar wind, and most importantly, a southward directed solar wind magnetic field (opposite the direction of Earth’s field) at the dayside of the magnetosphere. This condition is effective for transferring energy from the solar wind into Earth’s magnetosphere.

The largest storms that result from these conditions are associated with solar coronal mass ejections (CMEs) where a billion tons or so of plasma from the sun, with its embedded magnetic field, arrives at Earth. CMEs typically take several days to arrive at Earth but have been observed, for some of the most intense storms, to arrive in as short as 18 hours. Another solar wind disturbance that creates conditions favorable to geomagnetic storms is a high-speed solar wind stream (HSS). HSSs plow into the slower solar wind in front and create co-rotating interaction regions or CIRs. These regions are often related to geomagnetic storms that while less intense than CME storms, often can deposit more energy in Earth’s magnetosphere over a longer interval.

Storms also result in intense currents in the magnetosphere, changes in the radiation belts and changes in the ionosphere, including heating the ionosphere and upper atmosphere region called the thermosphere. In space, a ring of westward current around Earth produces magnetic disturbances on the ground. A measure of this current, the disturbance storm time (Dst) index, has been used historically to characterize the size of a geomagnetic storm. In addition, there are currents produced in the magnetosphere that follow the magnetic field, called field-aligned currents, and these connect to intense currents in the auroral ionosphere. These auroral currents, called the auroral electrojets, also produce large magnetic disturbances. Together, all of these currents and the magnetic deviations they produce on the ground are used to generate a planetary geomagnetic disturbance index called Kp. This index is the basis for one of the three NOAA Space Weather Scales, the Geomagnetic Storm, or G-Scale, that is used to describe space weather that can disrupt systems on Earth.

During storms, the currents in the ionosphere, as well as the energetic particles that precipitate into the ionosphere add energy in the form of heat that can increase the density and distribution of density in the upper atmosphere, causing extra drag on satellites in low-earth orbit. The local heating also creates strong horizontal variations in the in the ionospheric density that can modify the path of radio signals and create errors in the positioning information provided by GPS. While the storms create beautiful aurora, they also can disrupt navigation systems such as the Global Navigation Satellite System (GNSS) and create harmful geomagnetic induced currents (GICs) in the power grid and pipelines.

Yes, I know, long definition but it does explain everything quite well. While energetically some believe these geomagnetic storms can help us receive energetic downloads and become closer to our higher selves others do not. To be completely honest, I think during a geomagnetic storm you should relax as best you can and wait things out.

While some flares are more intense than others they do all still have some kind of effect on us but as mentioned above this one is nothing to be worried about. To learn more about what geomagnetic storms are check out the video below. Did you know that these storms existed?

Leave a Reply

We use cookies to give you the best experience possible
By continuing we'll assume you accept our
Cookie Policy
Yes, I Agree
More Info