Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have found several previously unknown genes that make bacteria resistant to last-resort antibiotics. The genes were found by searching large volumes of bacterial DNA and the results are published in the scientific journal Microbiome.
The increasing number of infections caused by antibiotic-resistant bacteria is a rapidly growing global problem. Disease-causing bacteria become resistant through mutations of their own DNA or by acquiring resistance genes from other, often harmless, bacteria.
By analyzing large volumes of DNA data, the researchers found 76 new types of resistance genes. Several of these genes can provide bacteria with the ability to degrade carbapenems, our most powerful class of antibiotics used to treat multi-resistant bacteria.
“Our study shows that there are lots of unknown resistance genes. Knowledge about these genes makes it possible to more effectively find and hopefully tackle new forms of multi-resistant bacteria”, says Erik Kristiansson, Professor in biostatistics at Chalmers University of Technology and principal investigator of the study.
“The more we know about how bacteria can defend themselves against antibiotics, the better are our odds for developing effective, new drugs”, explains co-author Joakim Larsson, Professor in environmental pharmacology and Director of the Centre for Antibiotic Resistance Research at the University of Gothenburg.
The researchers identified the novel genes by analyzing DNA sequences from bacteria collected from humans and various environments from all over the world.
“Resistance genes are often very rare, and a lot of DNA data needs to be examined before a new gene can be found”, Kristiansson says.
Identifying a resistance gene is also challenging if it has not previously been encountered. The research group solved this by developing new computational methods to find patterns in DNA that are associated with antibiotic resistance. By testing the genes they identified in the laboratory, they could then prove that their predictions were correct.
“Our methods are very efficient and can search for the specific patterns of novel resistance genes in large volumes of DNA sequence data,” says Fanny Berglund, a Ph.D. student in the research group.
The next step for the research groups is to search for genes that provide resistance to other forms of antibiotics.
“The novel genes we discovered are only the tip of the iceberg. There are still many unidentified antibiotic resistance genes that could become major global health problems in the future,” Kristiansson says.
What’s the solution?
We are at a critical junction; tens of millions of people are likely going to die in the coming decades as a result of widespread antibiotic abuses. The presence of mcr-1 may further speed up the prevalence of bacteria impervious to every single antibiotic currently available
Unfortunately, as revealed by Dr. Marcia Angell — former editor-in-chief of the New England Journal of Medicine— in her book, “The Truth About the Drug Companies“, the pharmaceutical industry wields enormous power over the US government, and pharmaceutical companies have been less than enthusiastic about spending money on antibiotic research and restricting the use of antibiotics in agriculture.
After all, agriculture accounts for 80 percent of their antibiotic sales. So we cannot depend on them for a solution. There are no quick and easy answers here. The impending superbug crisis needs to be addressed from a number of different angles, including the following:
- Elimination of antibiotics for growth promotion and prophylactic purposes in livestock and fish production. As with people, animals should be given antibiotics only when ill, and not for prophylactic purposes to “hide” poor hygiene and living conditions.
- To make your voice heard, please sign the Organic Consumer’s Association’s petition, calling for a mandatory ban on sub-therapeutic doses of antibiotics for livestock. The issue of antibiotic-resistance is a major reason for choosing organic, pastured meats and other animal products, including eggs and dairy.
- Improved infection prevention, with a focus on strengthening your immune system naturally. As an all-around preventive measure, you’ll want to make sure your vitamin D level is optimized year-round, especially during pregnancy, along with vitamin K2
- More responsible use of antibiotics in medicine. Use antibiotics only when absolutely necessary
- Also, avoid antibacterial household products
- Innovative new approaches to the treatment of infections from all branches of science, natural as well as allopathic
Image via Buzz Worthy